PROGRAM BEM8CON
C======================================================================
C                       BOUNDARY ELEMENT METHOD
C                              APPLIED TO
C              LAPLACE EQUATION (STEADY HEAT EQUATION )
C                 ELEMENT TYPE: CONSTANT ELEMENT
C    PROGRAMMED BY EIJI FUKUMORI // SUNY AT BUFFALO  // 1984 SPRING
C======================================================================
      IMPLICIT REAL*8 ( A-H , O-Z )
      PARAMETER (MXE=60,MXI=20,INTEPT=4, ND=2)
      DIMENSION XE(ND),YE(ND),
     * SAI(INTEPT),W(INTEPT),
     * G(MXE,MXE),F(MXE,MXE),A(MXE,MXE),
     * C(MXE),
     * X(MXE),Y(MXE),
     * NODEX(MXE,ND),
     * IELTYPE(MXE),BV(MXE),QN(MXE),H(MXE),RHS(MXE),
     * XI(MXI),YI(MXI), HI(MXI), CI(MXI)
C========================= INITIAL SET-UPS ============================
C
      C1 = - 1./ ( 8.* DATAN( 1.D0) )
      CALL GRULE ( INTEPT, SAI, W )
C========================= READING IN DATA ============================
C
      CALL INPUT (ND,MXE,MXI,NE,NODEX,IELTYPE,BV,X,Y,NIPT,XI,YI)
C      ...TYPE(I)=1 ---> TEMPERATURE PRESCRIBED
C      ...TYPE(I)=2 ---> HEAT FLUX PRESCRIBED
C============ BOUNDARY VALUE ARRANGEMENT ==============================
C
      CALL BVARRANG ( MXE, NE, IELTYPE, BV, H, QN )
C=============== FORMATION OF MATRIX G,F  AND  VECTOR C  ==============
C
      CALL MATRIX ( ND,MXE,C1,INTEPT,SAI,W,NE,NODEX,X,Y,XE,YE,G,F,C)         
C=============== FORMATION OF MATRIX A  AND  VECTOR RHS  ==============
C
      CALL FORM ( MXE, G,F,C,NE,IELTYPE,RHS,H,QN, A )
C===================== READY TO SOLVE  A . X  =  C  ===================
C
      CALL SYSTEM ( MXE , NE, A , RHS )
C====================== SORTING SOLUTION ==============================
C
      CALL SORTSOLN ( MXE, NE, IELTYPE, RHS, H, QN )
C================== INTERNAL POINTS   =================================
C
      CALL DOMAIN ( INTEPT,ND,MXE,MXI,C1,NIPT,NE,SAI,W,
     *            XI,YI, NODEX, X,Y, H,QN, HI, CI, XE, YE )
C================= PRINTING RESULTS   =================================
      CALL ECHOSOLN( MXE,MXI,NE,ND,NIPT,NODEX,X,Y,IELTYPE,H,QN,
     *               XI,YI,HI,CI, C)
      STOP 'NORMAL TERMINATION'
      END
C
C
      SUBROUTINE SORTSOLN ( MXE, NE, IELTYPE, RHS, H, QN )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION IELTYPE(MXE),RHS(MXE),QN(MXE),H(MXE)
      DO  I = 1 , NE
      IF ( IELTYPE(I) .EQ. 1 ) QN(I) = RHS(I)
      IF ( IELTYPE(I) .EQ. 2 ) H(I) = RHS(I)
      END DO
      RETURN
      END
C
C
      SUBROUTINE BVARRANG ( MXE, NE, IELTYPE, BV, H, QN )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION IELTYPE(MXE),BV(MXE),QN(MXE),H(MXE)
      DO I = 1 , NE
      IF ( IELTYPE(I) .EQ. 1 ) H(I) = BV(I)
      IF ( IELTYPE(I) .EQ. 2 ) QN(I) = BV(I)
      END DO
      RETURN
      END
C
C
      SUBROUTINE FORM ( MXE, G,F,C,NE,IELTYPE,RHS,H,QN, A )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION  G(MXE,MXE),F(MXE,MXE),A(MXE,MXE),C(MXE),
     * IELTYPE(MXE),QN(MXE),H(MXE),RHS(MXE)
C
      DO I = 1 , NE
      F(I,I) = F(I,I) - C(I)
      RHS(I) = 0.D0
      END DO
C
      DO J = 1 , NE
      IF ( IELTYPE(J) .EQ. 1 ) THEN
      DO I = 1 , NE
      A(I,J) = G(I,J)
      RHS(I) = RHS(I) + F(I,J) * H(J)
      END DO
      END IF
      IF ( IELTYPE(J) .EQ. 2 ) THEN
      DO I = 1 , NE
      A(I,J) = - F(I,J)
      RHS(I) = RHS(I) - G(I,J) * QN(J)
      END DO
      END IF
      END DO
      RETURN
      END
C
C
      SUBROUTINE MATRIX (ND,MXE,C1,INTEPT,SAI,W,NE,NODEX,X,Y,XE,YE,
     *                   G,F,C)
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION G(MXE,MXE),F(MXE,MXE),C(MXE),X(MXE),Y(MXE),
     * XE(ND),YE(ND),SAI(INTEPT),W(INTEPT) , NODEX(MXE,ND)
C----------  CLEAR MATRIX G(I,J) AND F(I,J) AND C(I)
      DO  I = 1 , NE
      C(I) = 0.D0
      DO  J = 1 , NE
      G(I,J) = 0.D0
      F(I,J) = 0.D0
      END DO
      END DO
C .......     (XP,YP) = COORDINATES OF SOURCE POINT.
      DO ISOURCE = 1 , NE
      XP = ( X(NODEX(ISOURCE,1)) + X(NODEX(ISOURCE,2)) ) / 2.
      YP = ( Y(NODEX(ISOURCE,1)) + Y(NODEX(ISOURCE,2)) ) / 2.
      DO ICURREN = 1 , NE
      DO  I = 1 , ND
      XE(I) = X(NODEX(ICURREN,I))
      YE(I) = Y(NODEX(ICURREN,I))
      END DO
C------------------ INTEGRAL ON AN ELEMENT
      IF ( ISOURCE .EQ. ICURREN ) THEN
      CALL FINE ( ND, C1, XE, YE, GE, FE )
      ELSE
      CALL INTE ( INTEPT,ND, XP, YP, C1, XE, YE, SAI, W, GE, FE )
      END IF
C------------------ MATRIX FORMATION
      G(ISOURCE,ICURREN) = GE
      F(ISOURCE,ICURREN) = FE
C------------------ FREE TERM EVALUATION
      C(ISOURCE) = C(ISOURCE) + FE
      END DO
      END DO
      RETURN
      END
C
C
      SUBROUTINE INPUT (ND,MXE,MXI,NE,NODEX,IELTYPE,BV,X,Y,
     * NIPT,XI,YI)
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION X(MXE),Y(MXE),IELTYPE(MXE),BV(MXE),NODEX(MXE,ND),
     * XI(MXI),YI(MXI)
      OPEN ( 1, FILE='BEM0.DAT', STATUS='OLD' )
      READ (1,*) NE
      DO IEL = 1 , NE
      READ (1,*) I,(NODEX(I,J),J=1,ND),IELTYPE(I), BV(I)
      END DO
      DO I = 1 , NE
      READ (1,*) NODE, X(NODE), Y(NODE)
      END DO
      READ (1,*) NIPT
      IF ( NIPT .GE. 1 ) THEN
      DO J = 1  , NIPT
      READ (1,*) I, XI(I), YI(I)
      END DO
      END IF
      CLOSE (1)
      RETURN
      END
C
C
      SUBROUTINE FINE ( ND, C1, XE, YE, GE, FE )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION XE(ND), YE(ND)
      FE = 0.D0
      DX = XE(2) - XE(1)
      DY = YE(2) - YE(1)
      DS = DSQRT ( DX*DX + DY*DY )
      GE = DS*C1 * ( DLOG(DS/2.D0) - 1.D0 )
      RETURN
      END
C
C
      SUBROUTINE INTE (INTEPT, ND, XP, YP, C1, XE, YE, SAI,W, GE,FE )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION XE(ND), YE(ND), SAI(INTEPT), W(INTEPT)
      GE = 0.D0
      FE = 0.D0
      DX = XE(2) - XE(1)
      DY = YE(2) - YE(1)
      DS = DSQRT ( DX*DX + DY*DY )
      DETJ = DS/2.D0
      XM = ( XE(2) + XE(1) ) /2.D0
      YM = ( YE(2) + YE(1) ) /2.D0
C
      DO IGAUSS = 1 , INTEPT
      XGAUSS = DX/2.D0*SAI(IGAUSS) + XM
      YGAUSS = DY/2.D0*SAI(IGAUSS) + YM
      RX = XGAUSS - XP
      RY = YGAUSS - YP
      R = DSQRT ( RX*RX + RY*RY )
C-------- INTEGRATION OF G(R)
      GE = GE + DLOG(R) * W(IGAUSS)
C-------- INTEGRATION OF F(R)
      FE = FE + ( RX*DY - RY*DX ) / (R*R) * W(IGAUSS)
      END DO
      GE =  C1 * DETJ * GE
      FE = -C1 * DETJ /DS * FE
      RETURN
      END
C
C
      SUBROUTINE DOMAIN ( INTEPT,ND,MXE,MXI,C1,NIPT,NE,
     *                   SAI,W,XI,YI,NODEX,X,Y,H,QN,HI, CI, XE, YE )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION NODEX(MXE,ND), SAI(INTEPT), W(INTEPT),
     *  XI(MXI),YI(MXI), X(MXE),Y(MXE),H(MXE),QN(MXE),
     *  XE(ND),YE(ND),HI(MXI), CI(MXI)
C
      IF ( NIPT .EQ. 0 ) RETURN
C
      DO INSIDE = 1 , NIPT
      XP = XI(INSIDE)
      YP = YI(INSIDE)
      SUM = 0.D0
      C = 0.D0
      DO IEL = 1 , NE
      DO I = 1 , ND
      XE(I) = X( NODEX(IEL,I) )
      YE(I) = Y( NODEX(IEL,I) )
      END DO
      CALL INTE (INTEPT,ND,XP,YP,C1,XE,YE,SAI,W, G,F )
      C = C + F
      SUM = SUM + F*H(IEL) - G*QN(IEL) 
      END DO
      CI(INSIDE) = C
      HI(INSIDE) = SUM
      END DO
      RETURN
      END
C
C
      SUBROUTINE ECHOSOLN( MXE,MXI,NE,ND,NIPT,NODEX,X,Y,IELTYPE,H,QN,
     *                   XI, YI, HI,CI, C  )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION X(MXE), Y(MXE), XI(MXI), YI(MXI), HI(MXI),CI(MXI), 
     *  NODEX(MXE,ND), IELTYPE(MXE), H(MXE), QN(MXE), C(MXE)
      CHARACTER*9 BC
      OPEN ( 1, FILE='SOLUTION.BEM', STATUS='UNKNOWN' )
      WRITE(1,*)' ========== STEADY HEAT TRANSFER ANALYSIS =========='
      WRITE(1,*)' ========== BY BEM USING CONSTANT ELEMENT =========='
      WRITE(1,*)' == CONVENTIONAL METHOD: [C]{H}+[G]{Q}-[F]{H}={0} =='
      WRITE(1,*)
      WRITE(1,*)
      WRITE(1,*)
C---------INPUT COORDINATES AND B.C.
      WRITE (1,*) ' = ELEMENT EGDE COORDINATES AND BOUDARY CONDITIONS ='
      WRITE (1,101)
  101 FORMAT (/ 3X,"EL#",7X,"X1",14X,"Y1",14X,"X2",14X,"Y2",14X,"BC"/
     *      1X, 79("-") )
      DO IEL = 1 , NE
      X1 = X(NODEX(IEL,1))
      Y1 = Y(NODEX(IEL,1))
      X2 = X(NODEX(IEL,2))
      Y2 = Y(NODEX(IEL,2))
      IF ( IELTYPE(IEL) .EQ. 1 ) THEN
      BC ='DIRICHLET'
      ELSE
      BC ='NUEMANN'
      END IF
      WRITE (1,100) IEL, X1, Y1, X2, Y2, BC
  100 FORMAT ( 1X, I5, 4G16.7,1X, A9 )
      END DO
C--------- SOLUTIONS ON BOUNADRY
      WRITE(1,*)
      WRITE(1,*)
      WRITE(1,*)
      WRITE(1,*)' ==== SOLUTIONS AND PRESCRIBED BOUNDARY BALUES ===='
      WRITE (1,201)
  201 FORMAT (/ 3X,"EL#",7X," H",14X,"Qn" ,14X," C" / 1X, 53("-") )
      DO IEL = 1 , NE
      WRITE(1,200) IEL, H(IEL), QN(IEL), C(IEL)
  200 FORMAT ( 1X, I5, 3G16.7 )
      END DO
C--------- INTERNAL VALUES
      WRITE(1,*)
      WRITE(1,*)
      WRITE(1,*)
      WRITE(1,*) ' === POTENTIAL VALUES AT INTERNAL POINTS ===='
      WRITE (1,301)
  301 FORMAT (/ 5X,"I",7X,"XI",14X,"YI",11X,"CI*HI",14X,"CI"/1X,69("-"))
      DO I = 1 , NIPT
      WRITE(1,300) I, XI(I), YI(I), HI(I), CI(I)
  300 FORMAT ( 1X, I5, 4G16.7 )
      END DO
      CLOSE (1)
      RETURN
      END
C
C
      SUBROUTINE GRULE ( N , SAI , W )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION SAI(N) , W(N)
      IF ( N .LT. 2 ) STOP'N<2'
      IF ( N .GT. 6 ) STOP'N>6'
      GO TO ( 99, 20, 30, 40, 50, 60 ) , N
   99 STOP
   20 SAI(1) = DSQRT(3.D0)/3.D0
      W(1) = 1.D0
      GO TO 88
   30 SAI(1) = DSQRT(15.D0)/5.D0
      SAI(2) = 0.D0
      W(1) = 5.D0/ 9.D0
      W(2) = 8.D0/ 9.D0
      GO TO 88
   40 SAI(1) = 0.33998104358485D0
      SAI(2) = 0.86113631159405D0
        W(1) = 0.65214515486254D0
        W(2) = 0.34785484513745D0
      GO TO 88
   50 SAI(1) = 0.90617984593866D0
      SAI(2) = 0.53846931010568D0
      SAI(3) = 0.D0
        W(1) = 0.23692688505619D0
        W(2) = 0.47862867049937D0
        W(3) = 5.12D0 / 9.D0
      GO TO 88
   60 SAI(1) = 0.23861918608320D0
      SAI(2) = 0.66120938646626D0
      SAI(3) = 0.93246951420315D0
        W(1) = 0.46791393457269D0
        W(2) = 0.36076157304814D0
        W(3) = 0.17132449237917D0
   88 NN = N / 2
      DO 11 I = 1 , NN
      J = N - I + 1
      SAI(J) = - SAI(I)
      W(J) = W(I)
   11 CONTINUE
      RETURN
      END
C
C
      SUBROUTINE SYSTEM ( MXN , N , A , C )
      IMPLICIT REAL*8 ( A-H , O-Z )
      DIMENSION A (MXN , MXN ) , C (MXN)
      N1 = N - 1
      DO 40 K = 1, N1
      L = K + 1
      DO 20 I = L , N
      P = A (I,K) / A (K,K)
      DO 30 J = L , N
   30 A (I,J) = A (I,J) - P * A ( K , J )
      C ( I ) = C ( I) - P * C ( K )
   20 CONTINUE
   40 CONTINUE
C---- BACK SUBSTITUTION
      C (N) = C (N) / A (N,N)
      DO 60 K = 1 , N1
      I = N - K
      L = I + 1
      P = C ( I )
      DO 50 J = L , N
   50 P = P - C (J) * A (I,J)
      C ( I ) = P / A (I,I)
   60 CONTINUE
      RETURN
      END