WELCOME TO PARABOLIC ELEMENT BEM PROGRAM

                                I N P U T   D A T A
          BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
          BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
                IF ELM TYPE(I) = 1, THEN DIRICHLIT.
                IF ELM TYPE(I) = 2, THEN NEUMANN.


          NUMBER OF ELEMENTS=    4

                    ELM # ---> ELEMENT NUMBER
          ELM #    I    J    K ELM TYPE        BOUNDARY VALUES
              1    1    2    3        1   0.00000   0.00000   0.00000
              2    3    4    5        2   0.00000   0.00000   0.00000
              3    5    6    7        1 100.00000 100.00000 100.00000
              4    7    8    1        2   0.00000   0.00000   0.00000



          NUMBER OF BOUNDARY NODES=    8

            NODE     X-COORDINATE     Y-COORDINATE
               1       0.00000000       0.00000000
               2       5.00000000       0.00000000
               3      10.00000000       0.00000000
               4      10.00000000       5.00000000
               5      10.00000000      10.00000000
               6       5.00000000      10.00000000
               7       0.00000000      10.00000000
               8       0.00000000       5.00000000



          NUMBER OF INTERIOR POINTS=    5

           POINT     X-COORDINATE     Y-COORDINATE
               1       5.00000000       2.50000000
               2       7.50000000       5.00000000
               3       5.00000000       7.50000000
               4       2.50000000       5.00000000
               5       5.00000000       5.00000000
  END OF INPUT-DATA ECHO PRINT



               *** N U M E R I C A L  S O L U T I O N  ***
  -- FLUX ON BOUNDARY --

 ELEMENT NODE-I NODE-J NODE-K         DP/DN(I)         DP/DN(J)         DP/DN(K)
       1      1      2      3   10.00000114       9.999999547       10.00000114    
       2      3      4      5  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       3      5      6      7  -10.00000114      -9.999999547      -10.00000114    
       4      7      8      1  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00



  -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --

    NODE      FREE TERM        POTENTIAL
      1       0.250000   0.00000000E+00
      2       0.500000   0.00000000E+00
      3       0.250000   0.00000000E+00
      4       0.500000    50.000000    
      5       0.250000    100.00000    
      6       0.500000    100.00000    
      7       0.250000    100.00000    
      8       0.500000    50.000000    



  -- POTENTIAL AT INTERNAL POINT --

  POINT X-COORD     Y-COORD   POTENTIAL
     1  5.0000      2.5000      25.000    
     2  7.5000      5.0000      50.000    
     3  5.0000      7.5000      75.000    
     4  2.5000      5.0000      50.000    
     5  5.0000      5.0000      50.000