WELCOME TO PARABOLIC ELEMENT BEM PROGRAM I N P U T D A T A BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS. IF ELM TYPE(I) = 1, THEN DIRICHLIT. IF ELM TYPE(I) = 2, THEN NEUMANN. NUMBER OF ELEMENTS= 4 ELM # ---> ELEMENT NUMBER ELM # I J K ELM TYPE BOUNDARY VALUES 1 1 2 3 1 0.00000 0.00000 0.00000 2 3 4 5 2 0.00000 0.00000 0.00000 3 5 6 7 1 100.00000 100.00000 100.00000 4 7 8 1 2 0.00000 0.00000 0.00000 NUMBER OF BOUNDARY NODES= 8 NODE X-COORDINATE Y-COORDINATE 1 0.00000000 0.00000000 2 5.00000000 0.00000000 3 10.00000000 0.00000000 4 10.00000000 5.00000000 5 10.00000000 10.00000000 6 5.00000000 10.00000000 7 0.00000000 10.00000000 8 0.00000000 5.00000000 NUMBER OF INTERIOR POINTS= 5 POINT X-COORDINATE Y-COORDINATE 1 5.00000000 2.50000000 2 7.50000000 5.00000000 3 5.00000000 7.50000000 4 2.50000000 5.00000000 5 5.00000000 5.00000000 END OF INPUT-DATA ECHO PRINT *** N U M E R I C A L S O L U T I O N *** -- FLUX ON BOUNDARY -- ELEMENT NODE-I NODE-J NODE-K DP/DN(I) DP/DN(J) DP/DN(K) 1 1 2 3 10.00000114 9.999999547 10.00000114 2 3 4 5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 3 5 6 7 -10.00000114 -9.999999547 -10.00000114 4 7 8 1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS -- NODE FREE TERM POTENTIAL 1 0.250000 0.00000000E+00 2 0.500000 0.00000000E+00 3 0.250000 0.00000000E+00 4 0.500000 50.000000 5 0.250000 100.00000 6 0.500000 100.00000 7 0.250000 100.00000 8 0.500000 50.000000 -- POTENTIAL AT INTERNAL POINT -- POINT X-COORD Y-COORD POTENTIAL 1 5.0000 2.5000 25.000 2 7.5000 5.0000 50.000 3 5.0000 7.5000 75.000 4 2.5000 5.0000 50.000 5 5.0000 5.0000 50.000