PROGRAM WRM1X1S1
C=======================================================================
C SOLUTION OF D2U/DXDX + ALPHASQ*U = 0 USING WEIGHTED RESIDUAL METHOD
C WITH AN APPROXIMATING FUNCTION OF U(X)=F0(X)+A1*F1(X)
C AND BOUNDARY CONDITIONS OF U(0)=U0. & DU/DX(L)=S;
C -------------- VARIABLE DEFNITION ----------- NOV/2023 EIJI FUKUMORI
C XST & XEN: INTEGRATION LIMITS; NSEG: NUMBER OF SEGMENTS IN LIMITS;
C UNKNOWN COEFFICENT (A1) IN THE APPROXIMATING FUNCTION IS EVALUATED
C BY THE FOLLOWING EQUATION: B1 * A1 + C1 = 0.
C-------------------- F0 = U0 + S*RL*(X/RL)
C-------------------- F1 = (X/RL)*(1.D0-X/RL) + (X/RL)
C=======================================================================
IMPLICIT REAL * 8 ( A-H , O-Z )
PARAMETER ( INTEPT = 3, NSEG=100, MULTI=10 )
DIMENSION SAI(INTEPT) , W(INTEPT)
COMMON / DEL / DELTAX /DOMAIN/ RL /BORDER/ U0, S
COMMON / COFF / ALPHASQ
EXTERNAL F0, F1
C=======================================================================
C THREE-SAMPLING-POINT GAUSS INTEGRATION METHOD
C N: NUMBER OF SAMPLING POINTS IN EACH SEGMENET
C SAI(I) & W(I): NON-DIMENSIONALIZED COORDINATE & WEIGHTING FACTOR
DATA SAI/-0.7745966692415D0,0.0000000000000D0, 0.7745966692415D0/
DATA W / 0.5555555555555D0,0.8888888888888D0, 0.5555555555555D0/
C=======================================================================
C------------------- MATERIAL DATA AND BOUNDARY VALUES
ALPHASQ=1.D0
XST=0.D0
XEN=0.5D0
U0 = 1.D0
S = 0.D0
C=======================================================================
WRITE(*,fmt='(a)', advance='no') 'TYPE IN S='
READ(*,*) S
C=======================================================================
OPEN ( 1, FILE='WRM1X1S1.FEM',STATUS='UNKNOWN' )
WRITE(1,*)'==== ONE DIMENSIONAL HELMHOLTZ EQUATION ===='
WRITE(1,*)'==== DIRICHLET ------- NEUMANN PROBLEM ===='
WRITE(1,*)'---- GALERKINS WEIGHTING FUNCTION----'
WRITE(1,*)'# OF GL INTEGRATION SAMPLING POINTS =',INTEPT
WRITE(1,*)'APPROXIMATING FUNCTION: U(X) = F0(X) + A1*F1(X)'
WRITE(1,*)'WHERE F0(X) = U0+SL(X/L)'
WRITE(1,*)'AND F1(X) = (X/L)*(1-X/L) + (X/L)'
C=======================================================================
C DELTAX: SPACIAL DEFERENTIAL LENGTH FOR DERIVATIVE EVALUATION.
RL = XEN - XST
DELTAX = RL / ( MULTI * NSEG )
C=======================================================================
WRITE(1,*)'LENGTH OF DOMAIN =',RL
WRITE(1,*)'NUMBER OF SEGMENTS FOR INTEGRATION =', NSEG
WRITE(1,*)'DX FOR DERIVATIVE EVALUATION =', DELTAX
C=======================================================================
WRITE(1,*)'X-COORDINATE OF LEFT END BOUNDARY =',XST
WRITE(1,*)'X-COORDINATE OF RIGHT END BOUNDARY =',XEN
WRITE(1,*)'ALPHASQ =', ALPHASQ
WRITE(1,*)'NUMBER OF SEGMENTS =', NSEG
WRITE(1,*)'DX FOR DERIVATIVE EVALUATION =', DELTAX
C----------------BOUNDARY CONDITIONS
WRITE(1,*) 'U(X) AT X=0 =',U0
WRITE(1,*) 'S AT X=L =', S
C=======================================================================
C COMPUTATION OF H(F0,F1) AND H(F1,F1)
CALL INTE ( ALPHASQ, XST, XEN, NSEG, INTEPT, SAI, W, F0, F1, C1 )
CALL INTE ( ALPHASQ, XST, XEN, NSEG, INTEPT, SAI, W, F1, F1, B1 )
C=======================================================================
C EVALUATION OF UNKNOWN A1 IN THE APPROXIMATING FUNCTION U(X)
A1 = -(C1+S) / B1
C=======================================================================
C PRINTING RESULTS
WRITE (1,*) 'H(F1,F1)=',B1
WRITE (1,*) 'H(F0,F1)=',C1
WRITE (1,*) 'A1 = -(H(F0,F1)+S)/H(F1,F1) =', A1
C=======================================================================
CALL OUTPUT ( XST, XEN, A1 )
CLOSE (1)
STOP 'NORMAL TERMINATION'
END
C
C
SUBROUTINE INTE ( ALPHASQ,XST,XEN,NSEG,INTEPT,SAI,W, G1,G2,TOTAL )
IMPLICIT REAL * 8 ( A-H , O-Z )
DIMENSION SAI(INTEPT) , W(INTEPT)
EXTERNAL G1, G2
TOTAL = 0.D0
DX = ( XEN - XST ) / NSEG
DO I = 1 , NSEG
X1 = DX*(I-1) + XST
X2 = X1 + DX
SUM = 0.D0
SH = ( X2 - X1 ) / 2.D0
AVE = ( X1 + X2 ) / 2.D0
DO J = 1 , INTEPT
X = SH * SAI(J) + AVE
SUM = SUM + (-DERIV(G1,X)*DERIV(G2,X)+ALPHASQ*G1(X)*G2(X)) * W(J)
END DO
TOTAL = TOTAL + SH * SUM
END DO
RETURN
END
C
C
FUNCTION F0(X)
IMPLICIT REAL * 8 ( A-H , O-Z )
COMMON /DOMAIN/ RL
COMMON /BORDER/ U0, S
F0 = U0 + S*RL*(X/RL)
RETURN
END
C
C
FUNCTION F1(X)
IMPLICIT REAL * 8 ( A-H , O-Z )
COMMON /DOMAIN/ RL
F1 = (X/RL)*(1.D0-X/RL) + (X/RL)
RETURN
END
C
C
FUNCTION DERIV(F,X)
IMPLICIT REAL * 8 ( A-H , O-Z )
COMMON / DEL / DELTAX
EXTERNAL F
DERIV = ( F(X+DELTAX) - F(X-DELTAX) ) / ( 2.D0*DELTAX )
RETURN
END
C
C
SUBROUTINE OUTPUT ( XST,XEN,A1 )
IMPLICIT REAL * 8 ( A-H , O-Z )
EXTERNAL F0, F1
NDIV = 10
DX = ( XEN - XST ) / NDIV
WRITE(1,*)'X-COORDINATE U(X)-RIGHT-NEUMANN DU/DX EXACT'
DO I = 1 , NDIV+1
X = DX*(I-1) + XST
UX = F0(X) + A1*F1(X)
DUDX = DERIV(F0,X)+A1*DERIV(F1,X)
WRITE(1,*) X, UX, DUDX, EXACT(X)
END DO
RETURN
END
C
C
FUNCTION EXACT (X)
IMPLICIT REAL * 8 ( A-H , O-Z )
COMMON / DEL / DELTAX /DOMAIN/ RL /BORDER/ U0, S
COMMON / COFF / ALPHASQ
C
A = U0
AL = DSQRT (ALPHASQ)
B = (AL*U0*DSIN(AL*RL)+S)/(AL*DCOS(AL*RL))
EXACT = A*DCOS(AL*X) + B*DSIN(AL*X)
RETURN
END