PROGRAM BEM8LINQWARP C====================================================================== C BOUNDARY ELEMENT METHOD C APPLIED TO C LAPLACE EQUATION ( WARPING EQUATION ) C ELEMENT TYPE: LINEAR ELEMENT C PROGRAMMED BY EIJI FUKUMORI // SUNY AT BUFFALO // 1984 SPRING C 2 DEC. 2024 C====================================================================== IMPLICIT REAL*8 ( A-H , O-Z ) INCLUDE 'PARAM.DAT' CCCCCCCCCCCCC PARAMETER (MXE=60, MXN=MXE, MXI=20,INTEPT=6, ND=2) DIMENSION XE(ND),YE(ND),GE(ND),FE(ND), * SAI(INTEPT),W(INTEPT), * A(MXN,MXN), * NODEX(MXE,ND),IELTYPE(MXE),BV(MXE,ND), * C(MXN), * X(MXN),Y(MXN), * QN(MXN),H(MXN),RHS(MXN),NDTYPE(MXN), * XI(MXI),YI(MXI), HI(MXI), CI(MXI) C========================= INITIAL SET-UPS ============================ C PI = 4.D0*DATAN( 1.D0) C1 = - 1.D0/ ( 2.D0*PI ) CALL GRULE ( INTEPT, SAI, W ) C========================= READING IN DATA ============================ C CALL INPUT (ND,MXE,MXI,NE,NODEX,IELTYPE,BV,X,Y,NIPT,XI,YI, * GM, THETA ) C ...TYPE(I)=1 ---> TEMPERATURE PRESCRIBED C ...TYPE(I)=2 ---> HEAT FLUX PRESCRIBED NNODE = NE C====================================================================== C================= ANALYSIS ON NODAL CONDITION ======================== C CALL NDANALYS (ND,MXE,MXN,NE,IELTYPE,NODEX,NDTYPE ) C====================== DIRICHLET B.C. TO H(I) ======================== C CALL BVARRANG ( ND, MXE,MXN, NE,NODEX,IELTYPE, BV, H ) C=============== FORMATION OF MATRIX A AND VECTOR RHS ============== C CALL MTXFORM (ND,MXE,MXN,C1,INTEPT,SAI,W,NE,NODEX,X,Y, * NDTYPE, XE,YE, GE,FE, C ,IELTYPE,BV,RHS,H, A ) C===================== READY TO SOLVE A . X = C =================== C CALL SYSTEM ( MXE , NNODE, A , RHS ) C====================== SORTING SOLUTION ============================== C CALL SORTSOLN (ND,MXE,MXN,NE,IELTYPE,NODEX,RHS,NDTYPE, * H,QN,BV ) C================== INTERNAL POINTS ================================= C CALL DOMAIN ( INTEPT,ND,MXE,MXN,MXI,C1,NIPT,NE, * GE,FE, SAI,W,XI,YI,NODEX,X,Y,H,BV,HI, CI,XE,YE ) C================= PRINTING RESULTS ================================= CALL ECHOSOLN( MXE,MXN,MXI,NE,ND,NIPT,NODEX,X,Y,IELTYPE, * H, BV, XI, YI, HI,CI, C, THETA ) STOP 'NORMAL TERMINATION' END C C SUBROUTINE NDANALYS (ND,MXE,MXN,NE,IELTYPE,NODEX,NDTYPE ) DIMENSION IELTYPE(MXE), NDTYPE(MXN), NODEX(MXE,ND) C------- THIS EVALUATES NODAL BOUNDARY CONDITION ------- C NDTYPE(NODE)=1 IMPLIES H IS KNOWN AT THE NODE. C NDTYPE(NODE)=2 IMPLIES QN IS KNOWN AT THE NODE. NNODE = NE DO I = 1 , NNODE NDTYPE(I) = 0 END DO C------- CORNER(NODAL) BOUNDARY CONDITION EVALUATION ------- DO IEL = 1 , NE DO J = 1 , ND NDTYPE(NODEX(IEL,J)) = NDTYPE(NODEX(IEL,J)) + IELTYPE(IEL) END DO END DO C------- DO I = 1 , NNODE IF ( NDTYPE(I) .EQ. 2 ) J = 1 IF ( NDTYPE(I) .EQ. 3 ) J = 3 IF ( NDTYPE(I) .EQ. 4 ) J = 2 NDTYPE(I) = J END DO RETURN END C C SUBROUTINE SORTSOLN (ND,MXE,MXN,NE,IELTYPE,NODEX,RHS,NDTYPE, * H,QN,BV ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION IELTYPE(MXE),RHS(MXN),QN(MXN),H(MXN),NDTYPE(MXN), * BV(MXE,ND),NODEX(MXE,ND) NNODE = NE DO I = 1 , NNODE IF ( NDTYPE(I) .EQ. 2 ) THEN H (I) = RHS(I) ELSE QN(I) = RHS(I) END IF END DO C------- REDISTRIBUTION OF QN(I) INTO BV(I,J) DO IEL = 1 , NE IF ( IELTYPE(IEL) .EQ. 1 ) THEN DO J = 1 , ND NODE = NODEX(IEL,J) BV(IEL,J) = QN(NODE) END DO END IF END DO RETURN END C C SUBROUTINE BVARRANG ( ND, MXE,MXN, NE,NODEX,IELTYPE, BV, H ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION IELTYPE(MXE),BV(MXE,ND),H(MXN),NODEX(MXE,ND) C------ CONVERT TEMPRERATURE ON ELEMENT TO NODAL TEMPERATURE - DO I = 1 , NE DO J = 1 , ND IF ( IELTYPE(I) .EQ. 1 ) THEN H(NODEX(I,J)) = BV(I,J) END IF END DO END DO RETURN END C C SUBROUTINE MTXFORM (ND,MXE,MXN,C1,INTEPT,SAI,W,NE,NODEX,X,Y, * NDTYPE, XE,YE, GE,FE, C ,IELTYPE,BV,RHS,H, A ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION C(MXN),X(MXN),Y(MXN),GE(ND),FE(ND), * XE(ND),YE(ND),SAI(INTEPT),W(INTEPT) , NODEX(MXE,ND), * IELTYPE(MXE),BV(MXE,ND), H(MXN),RHS(MXN),A(MXN,MXN), * NDTYPE(MXN) C=============== FORMATION OF MATRIX G,F AND VECTOR C C---------- CLEAR MATRIX A(I,J) AND RHS(I) AND C(I) NNODE = NE DO I = 1 , NNODE C(I) = 0.D0 RHS(I) = 0.D0 DO J = 1 , NNODE A(I,J) = 0.D0 END DO END DO C ....... (XP,YP) = COORDINATES OF OBSERVATION POINT. DO ISOURCE = 1 , NNODE XP = X(ISOURCE) YP = Y(ISOURCE) DO IEL = 1 , NE DO I = 1 , ND XE(I) = X(NODEX(IEL,I)) YE(I) = Y(NODEX(IEL,I)) END DO C------------------ INTEGRAL ON AN ELEMENT NDDIFF1 = ISOURCE-NODEX(IEL,1) NDDIFF2 = ISOURCE-NODEX(IEL,2) IF ( NDDIFF1*NDDIFF2 .EQ. 0 ) THEN CALL FINE ( ND,NDDIFF2, C1, XE, YE, GE, FE ) ELSE CALL INTE ( INTEPT,ND,XP,YP,C1,XE,YE,SAI,W, GE, FE ) END IF C------------------ MATRIX FORMATION C.............NON-FREE TERMS DO L = 1 , ND ICURREN = NODEX(IEL,L) IF (IELTYPE(IEL) .EQ. 1 ) THEN RHS(ISOURCE) = RHS(ISOURCE) + FE(L) * H(ICURREN) A(ISOURCE,ICURREN) = A(ISOURCE,ICURREN) + GE(L) END IF IF (IELTYPE(IEL) .EQ. 2 ) THEN RHS(ISOURCE) = RHS(ISOURCE) - GE(L) * BV(IEL,L) IF ( NDTYPE(ICURREN) .EQ. 2 ) THEN A(ISOURCE,ICURREN) = A(ISOURCE,ICURREN) - FE(L) ELSE RHS(ISOURCE) = RHS(ISOURCE) + FE(L) * H(ICURREN) END IF END IF C(ISOURCE) = C(ISOURCE) + FE(L) END DO END DO C.............FREE TERM IF (NDTYPE(ISOURCE) .EQ. 2 ) THEN A(ISOURCE,ISOURCE) = A(ISOURCE,ISOURCE) + C(ISOURCE) ELSE RHS(ISOURCE) = RHS(ISOURCE) - C(ISOURCE) * H(ISOURCE) END IF END DO RETURN END C C SUBROUTINE INPUT (ND,MXE,MXI,NE,NODEX,IELTYPE,BV,X,Y, * NIPT,XI,YI, GM, THETA ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION X(MXE),Y(MXE),IELTYPE(MXE),BV(MXE,ND),NODEX(MXE,ND), * XI(MXI),YI(MXI) OPEN ( 1, FILE='BEM1.DAT', STATUS='OLD' ) READ (1,*) GM, THETA READ (1,*) NE DO IEL = 1 , NE READ (1,*) I,(NODEX(I,J),J=1,ND),IELTYPE(I), (BV(I,J),J=1,ND) END DO NNODE = NE DO I = 1 , NNODE READ (1,*) NODE, X(NODE), Y(NODE) END DO READ (1,*) NIPT IF ( NIPT .GE. 1 ) THEN DO J = 1 , NIPT READ (1,*) I, XI(I), YI(I) END DO END IF CLOSE (1) RETURN END C C SUBROUTINE FINE ( ND,NDDIFF2, C1, XE, YE, GE, FE ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION XE(ND),YE(ND), GE(ND),FE(ND) FE(1) = 0.D0 FE(2) = 0.D0 DX = XE(2) - XE(1) DY = YE(2) - YE(1) DS = DSQRT ( DX*DX + DY*DY ) GE(1) = C1 * (DS/2.D0) *( DLOG(DS) - 1.5D0 ) GE(2) = C1 * (DS/2.D0) *( DLOG(DS) - 0.5D0 ) IF ( NDDIFF2 .EQ. 0 ) THEN TEMP = GE(1) GE(1) = GE(2) GE(2) = TEMP END IF RETURN END C C SUBROUTINE INTE (INTEPT, ND, XP, YP, C1, XE, YE, SAI,W, GE,FE ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION XE(ND),YE(ND), SAI(INTEPT),W(INTEPT), GE(ND),FE(ND) DO I = 1 , ND GE(I) = 0.D0 FE(I) = 0.D0 END DO DX = XE(2) - XE(1) DY = YE(2) - YE(1) DS = DSQRT ( DX*DX + DY*DY ) DETJ = DS/2.D0 XM = ( XE(2) + XE(1) ) /2.D0 YM = ( YE(2) + YE(1) ) /2.D0 C--------GAUSS INTEGRATION DO IGAUSS = 1 , INTEPT XGAUSS = DX/2.D0*SAI(IGAUSS) + XM YGAUSS = DY/2.D0*SAI(IGAUSS) + YM RX = XGAUSS - XP RY = YGAUSS - YP R = DSQRT ( RX*RX + RY*RY ) SF1 = 0.5D0 * ( 1.D0 - SAI(IGAUSS) ) SF2 = 0.5D0 * ( 1.D0 + SAI(IGAUSS) ) C-------- INTEGRATION OF G(R) TEMP = DLOG(R) * W(IGAUSS) GE(1) = GE(1) + TEMP * SF1 GE(2) = GE(2) + TEMP * SF2 C-------- INTEGRATION OF F(R) TEMP = (RX*DY-RY*DX) / (R*R) * W(IGAUSS) FE(1) = FE(1) + TEMP * SF1 FE(2) = FE(2) + TEMP * SF2 END DO GE(1) = C1 * DETJ * GE(1) GE(2) = C1 * DETJ * GE(2) FE(1) = -C1 * DETJ /DS * FE(1) FE(2) = -C1 * DETJ /DS * FE(2) RETURN END C C SUBROUTINE DOMAIN ( INTEPT,ND,MXE,MXN,MXI,C1,NIPT,NE, * GE,FE, SAI,W,XI,YI,NODEX,X,Y,H,BV,HI, CI,XE,YE ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION NODEX(MXE,ND), SAI(INTEPT), W(INTEPT), * XI(MXI),YI(MXI), X(MXN),Y(MXN),H(MXN), BV(MXE,ND), * XE(ND),YE(ND),HI(MXI),CI(MXI), * GE(ND),FE(ND) C IF ( NIPT .EQ. 0 ) RETURN C DO INSIDE = 1 , NIPT XP = XI(INSIDE) YP = YI(INSIDE) SUM = 0.D0 C = 0.D0 DO IEL = 1 , NE DO I = 1 , ND XE(I) = X( NODEX(IEL,I) ) YE(I) = Y( NODEX(IEL,I) ) END DO CALL INTE ( INTEPT, ND, XP, YP, C1, XE, YE, SAI,W, GE,FE ) DO J = 1 , ND C = C + FE(J) SUM = SUM + FE(J)*H(NODEX(IEL,J)) - GE(J)*BV(IEL,J) END DO END DO CI(INSIDE) = C HI(INSIDE) = SUM END DO RETURN END C C SUBROUTINE ECHOSOLN( MXE,MXN,MXI,NE,ND,NIPT,NODEX,X,Y,IELTYPE, * H, BV, XI, YI, HI,CI, C , THETA ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION X(MXN), Y(MXN), XI(MXI), YI(MXI), HI(MXI),CI(MXI), * NODEX(MXE,ND), IELTYPE(MXE), H(MXN), BV(MXE,ND), C(MXN) CHARACTER*9 BC OPEN ( 1, FILE='SOLUTION.BEM', STATUS='UNKNOWN' ) C---------INPUT COORDINATES AND B.C. WRITE (1,*) '========== STEADY HEAT TRANSFER ANALYSIS ==========' WRITE (1,*) '=========== BY BEM USING LINEAR ELEMENT ===========' WRITE (1,*) '== ALONG WITH STRAIGHT FORMATION OF [A]{X}={RHS} ==' WRITE (1,*) WRITE (1,*) ' ==== ELEMENT INFORMATION ====' WRITE (1,*) " ELEMENT# NODE(1) NODE(2) BC B-VALUE(1) B-VALUE(2)" DO IEL = 1 , NE IF ( IELTYPE(IEL) .EQ. 1 ) THEN BV1 = H(NODEX(IEL,1)) BV2 = H(NODEX(IEL,2)) BC ='DIRICHLET' END IF IF ( IELTYPE(IEL) .EQ. 2 ) THEN BV1 = BV(IEL,1) BV2 = BV(IEL,2) BC ='NUEMANN' END IF WRITE (1,*) IEL, NODEX(IEL,1), NODEX(IEL,2), BC, BV1, BV2 END DO C WRITE(1,*) WRITE(1,*) ' == NODAL INFOMATION AND SOLUTION OF TEMPERATURE ==' WRITE(1,*) "NODE# X-COORD Y-COORD S-COORD PSI W(X,Y) FREE-TERM" NNODE = NE S = 0.D0 I = 1 WRITE (1,*) I, X(I) , Y(I) , S, H(I) , THETA*H(I), C(I) DO I = 2 , NNODE S = S + DSQRT ( (X(I)-X(I-1))**2 + (Y(I)-Y(I-1))**2 ) WRITE (1,*) I, X(I) , Y(I) , S, H(I) , THETA*H(I), C(I) END DO I = 1 S = S + DSQRT ( (X(I)-X(NNODE))**2 + (Y(I)-Y(NNODE))**2 ) WRITE (1,*) I, X(I) , Y(I) , S, H(I) , THETA*H(I), C(I) C WRITE(1,*) WRITE(1,*) '=== SOLUTION OF HEAT FLUX ===' WRITE(1,*)" ELEMENT# HEAT-FLUX(1) HEAT-FLUX(2)" DO IEL = 1 , NE WRITE(1,*) IEL, BV(IEL,1), BV(IEL,2) END DO C WRITE(1,*) WRITE(1,*) ' === TEMPERATURE AT INTERNAL POINTS ===' WRITE (1,*)"POINT# X-COORD Y-COORD TEMPERATURE FREE-TERM" DO I = 1 , NIPT WRITE(1,*) I, XI(I), YI(I), HI(I), CI(I) END DO CLOSE (1) RETURN END C C SUBROUTINE SYSTEM ( MXN , N, A , C ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION A (MXN,MXN) , C (MXN) N1 = N - 1 DO K = 1, N1 L = K + 1 DO I = L , N P = A (I,K) / A (K,K) IF ( P .NE. 0. ) THEN DO J = L , N A (I,J) = A (I,J) - P * A ( K , J ) END DO C ( I ) = C ( I) - P * C ( K ) END IF END DO END DO C---- BACK SUBSTITUTION C (N) = C (N) / A (N,N) DO K = 1 , N1 I = N - K L = I + 1 P = C ( I ) DO J = L , N P = P - C (J) * A (I,J) END DO C ( I ) = P / A (I,I) END DO RETURN END C C SUBROUTINE GRULE ( N , SAI , W ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION SAI(N) , W(N), TABLESAI(8,4), TABLEW(8,4) IF ( N .LT. 1 ) STOP'N<1' IF ( N .GT. 8 ) STOP'N>8' C-------- 1-POINT GAUSS-LEGENDRE TABLESAI(1,1) = 0.D0 TABLEW(1,1) = 2.D0 C-------- 2-POINT GAUSS-LEGENDRE TABLESAI(2,1) = DSQRT(3.D0)/3.D0 TABLEW(2,1) = 1.D0 C-------- 3-POINT GAUSS-LEGENDRE TABLESAI(3,1) = DSQRT(15.D0)/5.D0 TABLESAI(3,2) = 0.D0 TABLEW(3,1) = 5.D0/ 9.D0 TABLEW(3,2) = 8.D0/ 9.D0 C-------- 4-POINT GAUSS-LEGENDRE TABLESAI(4,1) = 0.33998104358485626480D0 TABLESAI(4,2) = 0.86113631159405257522D0 TABLEW(4,1) = 0.6521451548625461426D0 TABLEW(4,2) = 0.34785484513745385737D0 C-------- 5-POINT GAUSS-LEGENDRE TABLESAI(5,1) = 0.90617984593866399279D0 TABLESAI(5,2) = 0.53846931010568309103D0 TABLESAI(5,3) = 0.D0 TABLEW(5,1) = 0.23692688505618908751D0 TABLEW(5,2) = 0.47862867049936646804D0 TABLEW(5,3) = 5.12D0 / 9.D0 C-------- 6-POINT GAUSS-LEGENDRE TABLESAI(6,1) = 0.23861918608319690863D0 TABLESAI(6,2) = 0.66120938646626451366D0 TABLESAI(6,3) = 0.93246951420315202781D0 TABLEW(6,1) = 0.46791393457269104738D0 TABLEW(6,2) = 0.36076157304813860756D0 TABLEW(6,3) = 0.17132449237917034504D0 C-------- 7-POINT GAUSS-LEGENDRE TABLESAI(7,1) = 0.94910791234275852452D0 TABLESAI(7,2) = 0.74153118559939443986D0 TABLESAI(7,3) = 0.40584515137739716690D0 TABLESAI(7,4) = 0.D0 TABLEW(7,1) = 0.12948496616886969327D0 TABLEW(7,2) = 0.27970539148927666790D0 TABLEW(7,3) = 0.38183005050511894495D0 TABLEW(7,4) = 0.41795918367346938775D0 C-------- 8-POINT GAUSS-LEGENDRE TABLESAI(8,1) = 0.96028985649753623168D0 TABLESAI(8,2) = 0.79666647741362673959D0 TABLESAI(8,3) = 0.52553240991632898581D0 TABLESAI(8,4) = 0.18343464249564980493D0 TABLEW(8,1) = 0.10122853629037625915D0 TABLEW(8,2) = 0.22238103445337447054D0 TABLEW(8,3) = 0.31370664587788728733D0 TABLEW(8,4) = 0.36268378337836198296D0 C----- SAI BETWEEN 0 AND +1 NFRONT = N / 2 NREAR = N - NFRONT DO I = 1, NREAR SAI(I) = TABLESAI(N,I) W(I) = TABLEW(N,I) END DO C----- FOR A CASE OF N=1 IF ( NFRONT .EQ. 0 ) THEN RETURN END IF C----- SAI BETWEEN -1 AND 0 DO I = 1 , NFRONT J = N - I + 1 SAI(J) = - TABLESAI(N,I) W(J) = TABLEW(N,I) END DO RETURN END