\begin{eqnarray} \left[M\right]= \left[\begin{matrix} M_{1}&M_{2}\end{matrix}\right] =\left[\begin{matrix} 1-t&t\end{matrix}\right] \end{eqnarray} |
\begin{eqnarray} \oint_{S}\left[M\right]^T\left[M\right]\left\{D_{n}\right\}ds= Δs_{i}\int_0^1\left[M\right]^T\left[M\right]dt= Δs_{i}\left[\begin{matrix} \frac{1}{3}&\frac{1}{6} \\ \frac{1}{6}&\frac{1}{3} \end{matrix} \right] \end{eqnarray} |
\begin{eqnarray} \frac{Δs_{i}}{6}\left[ \begin{matrix} 2&1 \\ 1&2 \end{matrix} \right] \left\{ \begin{matrix} D_{n1} \\ D_{n2} \end{matrix} \right\} =\left\{\begin{matrix} Q_{1} \\ Q_{2} \end{matrix} \right\}_{Δs_{i}} \end{eqnarray} |