\begin{eqnarray} Z_{in}=Z_0\frac{Z_L+jZ_0tan(\beta d)}{Z_0+jZ_Ltan(\beta d)} \end{eqnarray} |
\begin{eqnarray} Z_L=Z_0\frac{Z_{in}-jZ_0tan(\beta d)}{Z_0-jZ_{in}tan(\beta d)} \end{eqnarray} |
\begin{eqnarray} {Z_LZ}_{in}={Z_0}^2\frac{\frac{Z_L}{Z_0}+jtan(\beta d)}{\frac{Z_0}{Z_L}+jtan(\beta d)} \end{eqnarray} |
つまり、d=nλ/4と置くと以下の式が成立します。
\begin{eqnarray} Z_LZ_{in}={Z_0}^2 \end{eqnarray} |